

Reg.	No.	:	 •••••	 •••••	
Nam	e :		 	 	

VI Semester B.Sc. Degree (CBCSS – OBE – Regular/Supplementary/ Improvement) Examination, April 2025 (2019 to 2022 Admissions) DISCIPLINE SPECIFIC ELECTIVE IN MATHEMATICS 6B14A MAT: Graph Theory

Time: 3 Hours Max. Marks: 48

PART - A

Answer any 4 questions from this Part. Each question carries 1 mark.

- 1. Define a regular graph.
- 2. Define a connected graph.
- 3. When the complete graph K_n become Eulerian?
- 4. Define a Hamiltonian graph.
- 5. Define a Jordan curve.

 $(4 \times 1 = 4)$

PART - B

Answer **any 8** questions from this Part. **Each** question carries **2** marks.

- 6. Show that in any graph G, there is an even number of odd vertices.
- 7. Define the adjacency matrix of a graph G and illustrate with an example.
- 8. Find the number of edges in the complete bipartite graph $K_{m,n}$.
- 9. Draw the complete bipartite graph $K_{2,3}$. Find the radius and diameter of the complete bipartite graph $K_{2,3}$.
- 10. If a connected graph G has 21 vertices, what is the minimum possible number of edges in G?

K25U 0162

- 11. Define the vertex connectivity of a graph G. Find the vertex connectivity of the complete bipartite graph K_{2,3}.
- 12. Explain the travel salesman problem.
- 13. Give an example of a graph G with 6 vertices, which is both Eulerian and Hamiltonian.
- 14. Define the closure of a graph. Find the closure of the complete bipartite graph $K_{2.3}$.
- 15. Define a planar graph. Draw a non-planar graph on six vertices.
- 16. Define a critical-planar graph and illustrate the concept with an example. (8×2=16)

PART - C

Answer any 4 questions from this Part. Each question carries 4 marks.

- 17. State and prove the first theorem of graph theory.
- 18. Draw the Peterson graph and find its radius and diameter.
- 19. Show that any acyclic graph with n vertices and n-1 edges must be a tree.
- 20. Let G be a graph of order $n \ge 2$. Prove that G has at least two vertices which are not cut-vertices.
- 21. Explain the Konigsberg bridge problem.
- 22. Prove that a simple graph G is Hamiltonian, if its closure is a complete graph.
- 23. Prove that the complete bipartite graph $K_{3,3}$ is non-planar. (4×4=16)

PART + D

Answer any 2 questions from this Part. Each question carries 6 marks.

- 24. Prove that a non-empty graph with at least two vertices is bipartite, if and only if it has no odd cycles.
- 25. Prove that a graph G is connected if and only if it has a spanning tree.
- 26. State and prove Dirac's theorem for Hamiltonian graphs.
- 27. Derive the Euler's formula for the planar graphs. (2×6=12)
